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The paper considers the viscous hypersonlc flow past an infinitely slender
triangular wing at zero angle of attack and free~stream Mach number ¥ = =,
It has been shown previously in [1], that the solution to the equations of
the three~dimensional boundary layer, obtained independently of the left and
right wing edges, 1s identical with the solution for strong interaction on

& flat plate with slip flow., In view of the fact that the system of equa-
tions is parabolic this solution does not satisfy the condition of symmetry
of flow in the plane of symmetry of the wing and does not hold in that region.
In the present paper we shall construct a solution in the neighborhood of

the plane of symmetry of the wing. Due to the fact that the secondary flows
in the boundary layer are directed towards the plane of symmetry of the wing,
the thickness of the effective body determined by the displacement of the
boundary layer increases. The thickening of the effective body results in a
strengthening of the shock and in an increase of pressure as compared with
the value obtained from the solution for slip flow over a plate. It 1s shown
that when the Reynolds number tends to infinity the transverse cross-section
of the effective body in a plane normal to the undisturbed flow tends to a
semicircle,

1. Consilder the equations of a three-dimensional boundary layer in a
Cartesian system of coordinates xyz (the x-axis passes through the apex of

the triangular wing and 1s parallel to the undisturbed veloclty vector U
(Fig.1), the y-axis is normal to the plane of the wing).

Let us introduce the following notation: wu, v, w — components of the
velocity vector in the x, y, z directions, respectively, P — pressure,
p — density, { — enthalpy, 1, — stagnation enthalpy, u — coeffilclent of

*) The present 1issue was in press when the editors received the sad news
about the tragic untimely death of the gifted young scientist. A bilographl~
cal sketch and a l1st of publications of the author are given at the end of
this paper.

Editors.
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Interaction of the boundary layer and the flow past a wing 761

viscosity, x — adiabatic exponent (the gas 1s assumed to be perfect), o —
Prandtl number. In the case of flow over a triangular plate at zero angle
of attack, the system of equations of the three-dimensional boundary layer
has a self-similar solution (1) which 1is a function of the two variables n
and (¢ only

v =UxU (m, L), v =R UV (m,0), w=UxW(n,{)
p= R:"pUctP(L), p== RipoR (M, L), i=Uxth(n, %) (1.1)
io =UxH (n, §), M= Ry"yz, L=1/z, Re=polok/Io

Here p_ 1s the density of the undisturbed flow and u, is the coefficlent
of viscosity corresponding to the stagnation temperature. The eguation of
the outer edge of the boundary layer 1s

y=98(x. 2)=2R:"® () (1.2)

The functional relation between the dimensionless pressure p(¢) and the

z function ¢({) 1s taken from the solution to
the equations of inviscid flow separated from
w the viscous flow by a sharp boundary, which
can be obtained by the "strip theory" [2] .
Lo After substitution of (1.1) the equations of
the three-dimensional boundary layer reduce to
a system of equations of parabolic type, for
which ( 1s a characteristic.

NY

Due to the fact that the equations are para-
bolic, the solution (which is constructed
starting from the leading edge) 1s identical
with the solution for strong interaction on a flat plate with slip. This
solutlon, which 1s a function of one variable only, is [1)

U=y M), W=v Q) +Lx (), H=g(})
YO+ 26 (145 L =487 (e= (x—1)/2x)
YY" — 2886l = 4e7 (Lo = oot @) (1.3)
gv=~ (&) +val(t-5) @ ET2]
L=2g— (145" () — (W) —2%0"x’
YO) =¥ (0)=%(0=x%x(0)=0, ¥ (00)=—28, %' (c0) =1
g(0)=g, (or g'(0)=0), g(0) =z

Here w 1s the angle of sweep of the leading edge of the wing, and 7,
is the enthalpy which corresponds to the temperature of the wall. The vari-
able A 1s connected with n and (¢ by A.A.Dorodnitsyn's transformation

Flg. 1
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where ( 1s the constant in Equation p = Poc Ux? C02, which relates the
pressure in the Iinviscid flow with the angle of inclination & Dbetween the
outer edge of the boundary layer and the x-axis. The inviscid flow genera-
ted at the leading edge corresponds to flow over a power-law body

y =a (zcos ® — zsin w)”, where a 1s a constant. Thus, instead of the
tangent-wedge approxination ¢ = #(x + 1) [1) we can take the exact value of
¢ obtained from the solution of the self-simllar inviscid flow, ¢ = 1.42
for n=7/5 and € = 1.77T for x =5/3 (cf., e.g., [2], p.455 of the
Russian translation).

For simplicity we assume in Equations (1.3) a linear dependence of visco-
sity on enthalpy u/ho- 2% . In the case of flow over an insulated plate
(9’(0) = 0) and o = 1 Equations (1.3) reduce to a simpler form due to the
existence of the integral ¢ « % . The dimensionless pressure p , density
R , and boundary-layer thickness ¢ are determined by the relations

-4 _r — B(ly—1)" __4V4
_(Co—-C)‘/’7 R“‘ el ’ @ B(CO g) 1 B = 3C0V6 (15)

(» 1s found from the equation of state). The solution for (1.3) to (1.5)
does not satisfy the condition py « 0 at 2 = 0, 1l.e. i1t is not valid near
the plane of symmetry of.the wing. In the boundary layer the z-component of
the velocity vector is directed towards the plane of symmetry of the wing
[1l.

Y As a result of the collision of
the flows from the left and right
leading edges, the effective body
formed by the outer edge of the bound-
ary layer becomes thicker. Let A
denote a characteristic transverse
dimension of the reglon near the

z/ 2{ 2, z, £ plane of symmetry inside which the
k=t 4 £ solution (1.3), (1.4) and (1.5) does
Fig. 2 not hold, and let us call that reglon

the A-region.

Let the A,-region be that part of the aA-region which is filled with gas
coming from the boundary layer, and let the Ajz-reglion be the region of
inviscid flow over the effective body A, . ¥ig.2 represents the assumed
flow regions in the plane x = const . Here 1, is the boundary separating
5, and Az , lg i3 the shock wave which separates the A;-region from the
undisturbed flow, and I, , [, are the outer edge of the boundary layer and
the shock wave corresponding to slip flow over a flat plate, respectively.
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The flow parameters in the A, -region can be estimated as
lYooA
@ (1.6)
U_A Pl o 2A2 . 0.,A2
= p~ =2 ’ l~U0027 o~ =

y~A, z~A, u~U, v~

W —~— ———

! 2 x?

The estimates for y and ¢ , which are the usual boundary-layer esti-
mates, are subsequently confirmed by the integral-method solution for the
flow in the A-region. The estimates for v and p follow from the con-
tinuity equation. The pressure p (as well as the flow parameters in the
A,-region) 1s estimated by the usual hypersonic-flow method as the pressure
corresponding to flow over a slender body of thickness A , and the estimate
for p 18 obtained from the equation of state { ¢ is not assumed to be
small).

Let us estimate the total mass flow from the boundary layer into the

A, ~region x )
0 =\delp(,y, 0wy, 0dy, 800 (1.7)
0 0

Here & = 8(x,z) 1s the boundary-layer thickness. As will be seen later,
8/x -~ 0 for R,» = . Therefore the mass flow 0 1is determined from the
solution for slip flow over a flat plate, evaluated at z = O , This ylelds
the estimates ( 6, 1s the characteristic boundary-layer thickness)

p~puda?, w~Us, Q~polUcdilx (8,/z=Rs") (1.8)

Now we equate @ with @’ — the mass flow through the A, -region in the
x=-direction, using estimates (1.6) and (1.8)

0=0Q, 0 Uub2/z~p UM /2?,  Ajz~ s/ (1.9)

Thus, when A,- = the ratio 5/x tends to zero more slowly than &,/x,
8o that the ratio A/b*a = , In the following we investigate the assymptotic
behavior of the solution for /6, > 1 .

Let us estimate the ratio between the convective and viscous terms in the
A, -reglion. Using (1.6) and (1.9) in the x-momentum equation, we obtain the
estimates for the sum of the convective terms ¥ and for the largest viscous
term v

" U2 a2 U
au poo [o'0) A . a 6u p'o o0
5_%/*ﬂ(é>z___ug_,(i)4~§ (1.10)
K= A z 2/ pUs® \A z

Analogous ratios between the convective and the dissipative terms 1n the
Ay ~reglon hold for the other components of the momentum equation and for the
energy equation, The essential result is that the flow in the 4, -region 1s invis-
cid. Clearly, inslde the 4, -region the no-slip condition must be satisfled
at the wall and & boundary layer forms near the wall, It is important to
note, however, that the thiclkmess of this boundary layer is much less than a.

Substituting (1.6), (1.9) in the y- and z-momentum equationz we obtain
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the estimates for the characteristic Pressure drops Ap, and Ap, across the
4, =region

__op v A4 g dw . ow A
Apu—@A~pu%A~pwUm2 (2;) , Ap, = &—Af\pu 5; ANPWLOJN(’[Y
A A2 3a ) A 2 a, (1.11)
By (AP ()7 Ans (B4 (8
P \z ) \Z p2 V) \z )

The relative change of pressure acrose the Ay =reglion tends to zero as
R, tends to infinity, 1.e. within a relative error of order (0, / z)': the
pressure in the A, -region depends only on x . Hence it follows that the
boundary 1, between the regions 4, and 4, in the plane x = const (Fig.2)
is a semicircle. This is the only case in which the pressure in the Ay~
region is constant along 1, , like in the case of flow past an axisymmetric
body whose axis coincides with the x-axis. The axisymmetry of the flow in
the Ag-region 1s established in a manner analogous to that used in [3 and 4]
in the analysis of the flow in the entropy and boundary layers over elongated
slender bodies,

2. The thickening of the effective body near the plane of symmetry leads
to the appearance of a shock wave I, (Pig.2) which is semicircular in the
x = const plane., We obtain a system of equations which relate the flow
parameters at the beginning (section g, 1in Pig.2) and at the end (section
2o in Fig.2) of the region of interaction of the shock wave 1, with the
boundary layer. In this region, whose width ¢ tends to zero as R, tends
to infinity, the boundary-layer equations do not hold and one must use the
Navier-Stokes equations.

Inside thie t-region (as we shall call it) the flow changes form the
boundary-layer slip flow over a flat plate to the A-reglon flow. The char-~
acteristic values of the flow parameters in the t-region are intermediate
between those in the boundary layer and in the A-region, The density in
the t-region is low, as in the boundary layer p —~ poo(‘)‘?*/xB7 and in the
A=-region p~ paj(ﬁ* / I)Vt Therefore the thickness of the region &(x, z)
(dimension in the y-direction) coincides, as in the case of the boundary
layer, with the displacement thickness, i.e. the surface y = 8(x, z) ocan be
consldered to be a stream surface. On this surface the components of the
heat-flow vector and the stress tensor are equal to zero. Let us write down
the Navie-Stokes equations in divergence form, integrate these over the
volume of the g-reglon ( x’ 1is some fixed value)

0<e<<z, O<Cy<Co(a, 2), z ()22 (1) (2.1)
and transform the volume integrals into surface integrals.

Taking account of the no-slop condition at the wall and the condition
that the viscous stresses and the heat flux vanish on the surface y=58(x,z),

we obtain SS ovadS, + SS 0vadSy = 0 (2.2)
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SS (pvav + pn— T'n) dS, + SS (pvnv + pn—T,) dS; - (2.3)

+SSP"dSs+ SS(pn—T,.)dsq =0

V§ tovnio — g — (vT)1d8, + (§ t02nio — g — (V7)1 45, + ( gudSi= 0 (2.4)

Here S,, S, Sy, S, are the lateral surfaces of the volume under- consid-
eration, which are parts of the surfaces gz = 2,(x) , z = 2,(x) , v = 8(x,2)
and y = O , respectively, n 1s the outer normal to the lateral surface,
v, 18 the projection of the velocity vector v on n , T 1s the viscous
stress tensor, T, is the stress acting on 2 unit sutface element with nor-
mal n , (vT) is the product of the vector v and the tensor T, and gq,,
(vT), are the projections of the heat-flow vector g and of the vector (vT)
on the normal n .,

Let 4 /x tend to zero. In that case the lines s = #,(x) and x = #,(x)
tend to tne 1lne &4 = O as, clearly, gz ~2z,~A , and v, becomes + p on
S, and to —yp on S; . Equation (2.%) takes the form

\§ owas,— (§ pwds,= 0 (2.5)
In the following we shall need only the x-momentum equation. On the &,
surface we have
cosnr=A/x, cosny=0, cosnz=1+4 O(A?x?) (2.6)
Tne = TxCOS N+ Ty COSNY + Ty, COS NZ ~ T [ T + Ty
Taking account of the expressions for the viscous stresses we obtain the
estimates

4 du 2 v ow Wol/ o/
Txx=§l’«%—?”(@+£)~“t—m, xz:u(g%'*—z_g) ~pt°° (2.7)
Here the operator 3/3r 1s estimated as t¢~*, and 71,,, T,, are esti-

mated according to their largest components. The term under the first inte-
gral sign in (2.3), projected on the x-axis, can be estimated as

Pvnt ~p_Uqxd,2 [ 72, peosnr ~p U?(8,/z) A (2.8)

pol o pcosnx — T Woz? 8u\2 = 84
Toe ~ = P A e ~ A+ (3) T SA+ S

' Qvpl
The characteristic transverse dimension of the ¢-region, inside which the
shock wave Interacts with the boundary layer, is certainly not less than &,
(cef., e.g. [5]), which leads to the last estimate. Thus the second and third
term 1n the integrand can be neglected with respect to the first term. The
same argument holds for the second integral.

On the s, surface we have cos nz ~ &8, /2. oOn the s, surface

cosnr =0, cosny=1, cosnz=0 2.9)
du v Bl :
T = T = b (55 + 52) ~

Taking account of the estimates for the surfaces Sy~ Sg~ 8ux, Sy~ Sy~ tx,
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we have

SS pvaudS; ~ S S oV udS; ~ 0, U2z
SS pcosnrdS; ~p Uy, [ 27, S S(p 008 1@ — T're) dSs ~ "

From (2.10) 1t follows that the ratio of the sum of the integrals over
S; and §, to the sum of the integrals over S, and S, 1s of order t/x )
i1.e. tends to zero as p, tends to infinity. Finally, as A,- = , Equation
(2.3), projected on x, takes on the form

(2.10)

WU,
)

*

\§ pwnds, — § pwuds, = 0 (2.11)
In an analogous manner Equation (2.4) can be written in the form
\§ pwioas, — (§ pwiodsy = 0 (2.12)

Equations (2.5), (2.11) and (2.12) are analogues of relations across &
discontinuity, into which the t-region contracts in the limit 64/x - O .
The integrals over S, can be calculated, as we mentioned before, from the
solution for a boundary layer on a flat plate with slip at ( = O . Taking
account of (1.1), {(1.4) these can be reduced to the form

Ji= RS pwdS,; = (4/5) pOOUOOL*’hx“/A -V';(go‘hil, L,— }LL(;,

e pOO [90]

Ty = \\owu dS,= (4f3) p UL,V V AL (2.13)
Ty = \\pwio dSy= (/s) p ULy ™ V ALy s

[ve]

h=Swa, n={owa, i= (oW an
0 0 t)

The integrals {,, ig, s can be calculated from solutions to (1.3). They

all converge, due to the exponential vanishing of ¥ as X - = .

3, Let us calculate the flow in the A-region, using the integral method.
Integrate the equations of inviscid flow, in divergence form, over the volume
of the A,-region from O to x , where x 1s some fixed value. Take into
account that the surface which separates the 5, - and Aj-regions 1s a stream
surface, and that the mass, momentum, and energy fluxes through sections
z = 2,(x) and z = x,"(x) (Fig.2) can be determined from (2.5), (2.11) and

(2.12). The integral relations take on the form
X

SS pudSa + 2J, =0, SS (p+pu2)dSA—n§ prdr 4+ 2J3=0 a1

g&puzodSA + 2J3 = 0, p= poanozk (%)2

The factor 2 in front of J,, J,, Jy accounts for the mass, momentum and
energy inflow into the j,-region from the both edges of the wing. The
double integrals are evaluated over the surface S a, of the A -region in a
given x cross-section. The second integral 1n the momentum equatlion 1s
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evaluated over the surface 7, (Fig.2), separating the a,- afd a,-regilons,
r{x) being the radius of the circumference 1, (Pig.2). 1In addition to the
three conservation equations we have the relation connecting the pressure
with the angle of inclination of the surface 1, with respect to the xy-axis,
in which % 1s a constant, assumed to be known (see below). As we showed
above, the pressure p 1n the 4, -region 1s a function of x only. To
close the system (3.1) we assume u = ulx), p = p{x) , 1.e. we use the sim-
plest version of the integral method. Introduce in (3.1) the dimensionless
variables

x=L,%o, r = L,ro, u=Uglig, p =0 Uc? Po, 0 =000 o= Ucioo (3.2)
The variable x, is clearly ldentical with &,.

Taking into account the expressions for J,, Jy, Js (2.13) and the expres-
sion S5 = 0.5mr? Equations (3.1) become in dimensionless form

Polioro? = — Wiy, (Po + Potao®) 1o — 2 S PoroTo ATy = — vigzy'ls
2/ ® PO u02 . EY 0 ’ 16 V-A_C l/ (3.3)
Pottore” {7 o T 7)2 —Vigtel,  p=k(rd)’, v= 5 :

The system of integro-differential equations (3.3) has a simple solution,
which satisfies the condition 7,(0) = 0 . This solution is

ro = axys, po=Pxo"h, po=Yxs, uy= const (3.4)

(BBl Zyh g A8 e 13 vk | i [\
% ‘( 169k ) , B=gv|ald) r= 16 (ia/ i1 + 0.3Z) ( Z ) (3.9)
Vuziz‘a + [0.48 (0 —1)2 + 1.2% (% — 1)) isis— [% - 0.3 (v — 1)] is
[0.09 (x — 1) 4 0.6%) i1
The value of the constant % is found from numerical calculations of
the self-similar solution for the flow over an axisymmetric power-law body
of the form y ~ x*, n = 13/16 .

u = %+o.3z, Z=

Following 1s a table of values of a, B, v, u, and T (T 1is the tempera-
ture in the A, -reglon, scaled with respect to the stagnation temperature)
for x = 1.4 and x = 1,667
and leading edge sweep

The

angle w = 60°.

values of ¢ i are
@ @ B ‘ Y I % T based on calculations

p;rformed by A.A.Boga-

cheva, some results of

Diatomic gas (x =1.4, k=0.950) which were cited in [1].
30° | 0.548 | 0.189 | 2.55 | 0.694 | 0.518 The calculations were
45° | 0.612 | 0.235 | 3.48 | 0.694 | 0.518 performed for an insu-
60° | 0.664 | 0.277 | 3.63 | 0.689 | 0.525 lated surface, for which,
7 | 0.678 | 0.288 | 380 | 0685 | 0530 §°_°fn he eastly seen,

. 3- [ .

Monatomic gas (x =S5fs, k=0.982) . It can be seen from
30° ] 0.590 ] 0.226 | 2.35 | 0.721 | 0.479 he examples that, in
45° | 0.661 | 0.283 | 2.91 | 0.716 | 0.487 el Tand T~
60° | 0.7143 | 0.330 | 3:3& | 0.741 | 0.494 ontirns’ theeopimiich
85° | 0.723 | 0.339 | 2.56 | 0.703 | 0.505 {ng)ome the estimates
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Fig.3 shows the pressure Po and the thickness of the effective body as
functions of x,= R, for w = bO%, calculated from (3.4), (3.5). The golid
and dashed lines correspond
pyj\ to »x = 1.4, x = 1,667,
a0 Ve \ respectively. For comparison,
\ \ -50° there are also given the
\ \ @ dimensionless pressure p,
880753 X

and the thickness of the
boundary layer 1y, , calcu-
lated from

A
VE, e
y1 == B (R, cot 0)"*

/ which follow from the solu-
tion ror a slipping plate

7 NN -
\\ 57 at » 0.
N ¥rom Pig.3 one can see
~ = how the pressure and the
Vi bound:rr;y-lgyer tl;iclmess
near the plane of symmetry

w? 74 vl 70° 97 of the wing increase as com-
Fig. 3 pared with the values compu~

ted from the solution for a

plate with slip.

The solution obtained above is of asymptotic nature. Rigorously spesking
it may be used for p;>p,, and ¥ >> y,. One can assume that the basic quali~
tative features are valid already for y,> y, and p,> p,.

=
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2.005 2 AR

o
o
/
X
“
T
N

T

20025

BIBLIOGRAPHY

1. Ludyahenakn% M.D., O prostranstvennom giperzvukovom techenil okolo ton~-
kikh kryllev (On three-dimensional hypersonic flow past slender alr-
foils). »pw¥ Vol.28, m 5, 1964,

2. Hayes, W,D, and Probstein, R.F., ersonic Flow Theory, Academlc Press,
1959. (Russian transl. IL, 1962).

3. Ladyzhenskii, M.D., Giperzvukovoe pravilo ploshchadel (Hypersonic area
rule). Inzh.zh., Vol.l, 1, 1961.

4, Ladyzhenskii, M.D., Obtekanie tonkikh tel viazkim giperzvukovym potokom
Hypersonic viscous flow over slender bodles). PwW¥ Vol.27, W 5,1963.

5. Lees, L. and Reeves, B.L., Supersonic separated and reattaching laminar
flows. General theory and application to adiabatic boundary layer-
shock wave interaction, AIAA Report N 64-4, 1664,

6. Chernyi, G.G., Techeniia gaze s bol'shoi sverkhzvukovol skorost’iu,
Pizmatgiz, 1959. (English translation b¥ P.F.Probatein, Introduction
to hypersonic flow, Academic Press, 1961).

X.D.LADYSERXSKII
(November 10, 1931 — May 15, 1965)

Mikhail Davidovich Ladyzhenskii was born to a soldler's family in Odessa.
In 1949 he begsn his studies at Moscow University in the Physico~Technlcal
Department, which two years later became an autonomous Institute, After
graduating with honors from the Institute he Jjoined in 1955 the Central
Aero-Hydrodynamic Institute (TsAGI).

In 1961 he submitted his thesis for the degree of Candidate of Physico-~
Mathematical Sciences, entitled "some Problems in the Gas Dynamics of



N.D.Ladyshensiil 769

Hypersonic Flows".

M.D.Ladyzhenskil's interests covered a very wide fleld. He has worked on
the theory of propagation of shock waves from supersonic planes, and on the
theory of three-dimensional hypersonic flow, in particular on three-dimen-
sional flow past slender weakly-blunted bodies {hypersonic area rule).
Several of his investigations were devoted to problems of control of flow of
an jonized gas in a magnetic field at low magnetic Reynolds numbers.

Problems of high-altitude hypersonic flight are connected with the study
of viscous hypersonic flows. WM.D.Ladyzhenskii was a pioneer in the theory
of three-dimensional hypersonic flow of a viscous gas, and this theory has
been published only as far as 1t has been advanced by his work.

In 1961 he was awarded the N,E,Zhukovskii Prize of the First Class (joint-
1y with O.M,Belotserkovskii and V.V.Sychev) for his investigations in the
field of hypersonic nozzles and three~dimensional hypersonic flows.

In addition to his work in the N,E.Zhukovskii Central Aero~Hydrodynamlc
Institute, M.D.Ladyzhenskil was on the faculty of the Moscow Physico-Techni-
cal Institute.

PUBLISHED WORKS OF M.D.LADYZHENSKII

1. 2Zatukhanie udarnykh voln (Damping of shock waves). Py¥ Vol.21,M 1, 1957.

2. Zadachi obtekaniia v magnitnoi gidrodinamike (Problems of flow past
bodies in magnetohydrodynemics). pw¥ Vol.23, W 2, 1959.

3. Giperzvukovoe obtekanle tela v magnitnoi gidrodinamike (Hypersonic flow
past a body in magnetohydrodynamics). pwm¥ Vol.23, ¥ 6, 1959,

4, 0O techeniiakh gaza s bol'shol sverkhzvukovoi skorost'iu (On gas flows at
high supersonic speed), Dokl.Akad.Nauk $SSR, Vol.13%, W 2, 1960,

5 0 giperzvukovom obtekanil zatuplennykh tel (On hypersonic flow past
blunt bodles). Izv.Akad,Nauk SSSR, Ser.Mekh.Mashinost. ® 1, 1961.

6. G@iperzvukovoe pravilo ploshchadei (Hypersonic area rule). Inzh.Zh.
Vol.,l, ® 1, 1961.

7. 1Issledovanie rasprostraneniia udarnykh voln v razriadnol trubke (Study
of the propaggtion of shock waves in a discharge tube). PMIF, W 2,

( jointly with L.G.Chernikova), 1961.

8. Obobshchenie giperzvukovogo pravila ploshchadel (Generalization of er-
sonic area rule). Izv.Akad.Nauk SSSR, Ser.Mekh,Mashinost., M 3, 1961.

9. 0 nekotorykh integralakh uravnenii okolozvukovykh techenil gaza (On some
I%gm;egrg%.ﬂ of the equations of transonic gas flow). Inzh.Zh. Vol.2,

1, 1962,

10. Analiz uravnenii giperzvukovukh techenii i1 reshenle zadachi Koshi (Ana-
lysis of the equations of ersonic flow and the solution of the
Cauchy problem). PMN Vol,26, ® 2, 1962,

11. Giperzvukovoe obtekanle tonkikh zatuplennykh elllpticheskikh konusov
(Hypersonic flow past slender blunt elliptic cones). Inzh.Zh.,Vol.2,
® 3, (Jointly with A.A.Bogacheva), 1962.

12, Ob istechenili viazkogo gaza v pustotu (On the efflux of a viscous gas
into a vacuum). PWN Vol.26, ® 4, 1962,

13. Ob odnom avtomodel'nom reshenii uravnenii magnitnoi gidrodinamiki (One
self-similar solution to the magnetohydrodynamic equations). PNN
Vol.26, M 5, (Jjointly with A.A.Bogacheva), 1962.

14, 0 magnitogldrodinamicheskom techenii pri malykh Re, (On Magnetohydro-
dynamic Flow at Low Re,). Voprosy magnitnol gidrodinamiki i dinamiki
plazmy (Problems of Magnetohydrodynamics and Plasma Dynamics).
Izd,.Akad.Nauk Latv.SSR, 1962.

15. K voprosu ob ustoichivosti plazmannogo shnura {On the Problem of Stabi-
1lity of Ion Hose), Izd.Akad Nauk Latv.SSR, 1962.

16. 0 magnitogidrodinamicheskom giperzvukovom obtekanii klina (On the e~
tohydrodynamic hypersonic flow past a wedge). PWN Vol.27, & 1, 1963.

17. Obtekanie tonkikh tel viazkim giperzvukovym potokom (Hypersonic viscous
flow over slender bodies), PWN Vol.27, ® 5, 1963.

18, O raaschete pogranichnogo sloia szhimaemoi zhidkosti s granichnymi uslo-
viiaml skol'zheniia (On the calculation of the boundary layer in a
compressible fluid with slip conditions at the boun ). Dokl.Akad.
Nauk SSSR Vol.154, ® 6, (Jointly with V.8.Galkin), 1 .

19. O prostranstvennom giperzvukovom techenii okolo tonkikh kryl'ev (On three-
dimensional hypersonic flow past slender airfoils).py¥ Vol,28,M5,1964,

20, O gi’p;:rgv?kovym'é tech;giiakh v soplakh (On hypersonic flows in nozzles),
PAN Vol.29, W 1, 1905. Translated by A.S.



