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The paper considers the viscous hypersonic flow past an Infinitely slender 
triangular Wing at zero angle of attack and free-stream Mach number N_Yo~~ m. 
It has been shown previously in [l], that the solution to the equations of 
the three-dlmenslonal boundary layer, obtained independently of the left and 
right wing edges, Is Identical with the solution for strong interaction on 
a flat plate with slip flow. In view of the fact that the system of equa- 
tions Is parabolic this solution does not satisfy the condition of symmetry 
of flow In the plane of symmetry of the wing and does not hold In that region. 
In the present paper we shall construct a solution In the neighborhood of 
the plane of symmetry of the wing. Due, to the fact that the secondary flows 
In the boumdary layer are directed towards the plane of synsnetry of the wing, 
the thickness of the effective body determined by the displacement of the 
boundary layer Increases. The thickening of the effective body results In a 
strengthening of the shock and ln an Increase of pressure as compared with 
the value obtained from the solution for slip flow over a plate. It Is shown 
that when the Reynolds number tends to Infinity the transverse cross-section 
of the effective body In a plane normal to the undisturbed flow tends to a 
semicircle. 

1. Consider the equations of a three-dimensional boundary layer in a 

Cartesian system of coordinates .rke (the x-axis passes through the apex of 

the triangular wing and Is parallel to the undisturbed velocity vector U_ 

(Flg.l), the y-axis Is normal to the plane of the wing). 

Let us Introduce the following notation: u, v, m - components of the 

velocity vector In the X, y, t directions, respectively, P - pressure, 

p - density, t - enthalpy, t,, - stagnation enthalpy, p - coefficient of 

“1 The present Issue was In press when the editors received the sad news 
about the tragic untimely death of the gifted young scientist. A biographi- 
cal sketch and a list of publications of the author are given at the end of 
this paper. 

Editors. 
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vlscoslty, n - adiabatic exponent (the gas la assumed to be Perfect), o - 

Prandtl number. In the case .of flow over a triangular plate at zero angle 

of attack, the system of equations of the three-dimensional boundary layer 

has a self-similar solution cl] which Is a function of the two variables q 

and C only 

Here p, Is the density of the undisturbed flow and p,, Is the coefficient 

of viscosity corresponding to the stagnation temperature. The equation of 

the outer edge of the boundary layer Is 

y = 8 (x, z) = xR,-” CD (5) (1.2) 

The functional rel'atlon between the dimensionless pressure p(C) and the 

z 

w 

4w 

-Q 

function O(c) Is taken from the solution to 

the equations of lnvlscld flow separated from 

the viscous flow by a sharp boundary, which 

can be obtained by the "strip theory" [23 . 

After substitution of (1.1) the equations of 

X the three-dimensional boundary layer reduce to 

a system of equations of parabolic type, for 

which 6 Is a characteristic. 

Fig. 1 
Due to the fact that the equations are para- 

bollc, the solution (which is constructed 

starting from the leading edge) Is Identical 

with the solution for strong Interaction on a flat plate with slip. This 

solution, which Is a function of one variable only, Is [l] 

u = x’ (A), w = *’ (A) + LX w H = g (V 
qqn + 28 (1 + r&“) L = 4E-%$“’ (e= (x - 1) /2x) 

?J?x” - 2&L = 4e-1X” (50 = d 0) 

g’+$(L)‘+f_L[(l-+)$ (2g;Lq 

L = 2g - (1 + 50”) (x’)” - (W)” - 2bvx 

l# (0) = $’ (0) = x (0) = x’ (0) = 0, q,’ (00) = - 50, x’ (cm) = 1 

g (0) = g, ( or g’ (0) = O), g(oo) = '12 

V-3) 

Here w Is the angle of sweep of the leading edge of the wing, and 0, 

Is the enthalpy which corresponds to the temperature of the wall. The varl- 

able 1 Is connected with q and c by A.A.Dorodniteynls transformation 
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fl A 

s Rdq, or q 

0 
Ko - 6)” 

= +SL(h) dh (1.4) 
0 

co 

where C is the constant in Equation p = pm Um2C0’, which relates the 

pressure In the inviscid flow with the angle of lncllnatlon 0 between the 

outer edge of the boundary layer and the ~-axis. The invlscld flow genera- 
ted at the leading edge corresponds to flow over a power-law body 

Y = d (3 OOg 0 - z gin (,J)%, where 0 Is a constant. Thus, Instead of the 

tangent-wedge approxlnation C - *( n + 1) Cl] we can take the exact value of 

C obtained from the solution of the self-similar inviscid flow, C - 1.42 

for PI - 7/5 and C - 1.77 for n - 5/3 (cf., e.g., [2], p.455 of the 

Russian translation). 

For simplicity we assume In Equations (1.3) a linear dependence of visco- 

sity on enthalpy c(/clo= 2h . In the case of flow over an insulated plate 

(o'(O) - 0) and u - 1 Equations (1.3) reduce to a simpler form due to the 

existence of the Integral 0 - 4 . The dimensionless pressure p , density 
R , and boundary-layer thickness Q are determined by the relations 

P= 
(co fcfA 7 R = 2 , @ = B (Co - t;)“, B = lo% (1.5) 

(R Is found from the equation of state). The solution for (1.3) to (1.5) 

does not satlsfy the condition m I 0 at z I 0 , I.e. it is not valid near 

the plane of sysssetry of.the wing. In the boundary layer the a-component of 

the velocity vector is directed towards the plane of symmetry of the wing 

Cl1 . 

As a result of the collision of 

the flows from the left and right 

leading edges, the effective body 

formed by the outer edge of thebound- 

ary layer becomes thicker. Let A 

denote a characteristic transverse 

dimension of the region near the 

plane of symmetry Inside which the 

solution (1.3), (1.4) and (1.5) does 
Pig. 2 not hold, and let us call that region 

the A-region. 

Let the A,-region be that part of the A-region which Is filled with gas 

comlmg from the bound8ryl8yer, and let the A,-region be the region of 

Inviscid flow over the effeative body A, . Fig.2 represents the assumed 

flow reglcns in tht plam3 x - oond . Here 1, Is the bound8ry separating 

A, and AP , 10 Is the shock wave which separates the AS-region from the 

undisturbed flow, 8nd Zs , L. are the outer edge of the boundary layer and 

the shock wave corresponding to slip flow over a flat plate, respectively. 
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The flow parameters In the A,-region can be estimated as 

Y w-7 

ucoA 
w-- 

x ’ 
The estimates for u 

mates, are subsequently 

flow In the A-region. 

and t , which are the usual boundary-layer estl- 

confirmed by the Integral-method solution for the 

The estimates for v and lb follow from the con- 

tinuity equation. The pressure p (as well as the flow parameters In the 

2p-region) Is estimated by the usual hypersonic-flow method as the pressure 

corresponding to flow over a slender body of thickness A , and the estimate 

for p Is obtained from the equation of state ( c Is not assumed to be 

small). 

Let us estimate the total mass flow from the boundary layer into the 

A,-region 

Q = [d&s, Y, O)Wz, Y, Wy, 6 = 6 (2, 0) (1.7) 

0 

Here 6 - &I(~,~)~ls the boundary-layer thlchess. As will be seen later, 

A/x - 0 for Rx' 0~ . Therefore the mass flow 0 Is determlned from the 

solution for slip flow over a flat plate, evaluated at I = 0 . This yields 

the estimates ( b+, Is the oharacterletlc boundary-layer thlclmess) 

P-.pc06*a/xa, w- uc.3, Q -~cJJcd~~/x (6*/x = R,-"4) (1.8) 

Now we equate Q with Q' - the mass flow through the A,-region In the 

r-direction, using estimates (1.6) and (1.8) 

Q- Q', p,U,d,3 / x - p,U,A4 /x2, A/x - (6, /x)“’ (1.9) 

Thus, when Rx- = the ratio A/X tends to zero more slowly than a,+/~, 

so that the ratio A/6,- - . In the following we Investigate the assymptotlc 

behavior of the solution for A/b, 3 1 . 

Let us estimate the ratio between the convective and viscous terms In the 

A, -region. Using (1.6) and (1.9) ln the s-momentum equation, we obtain the 
estimates for the sum of the convective terms X and for the largest viscous 

(1.10) 

Analogous ratios between the convective and the dlselpatlve terms In the 

A,-region hold for the other components of the momentum equation and for tin. 

ener~ equati. l& eaeentialresultti that the flow In the A,-region Is lnvls- 

cld. Clearly, Inside the A,-region the no-slip condition must be satisfied 

at the wall and a boundary layer forms near the wall. It Is Important to 
note, however, that the thlcltness of this boundary layer Is much less than A. 

Substituting (1.6), (1.9) In the v- and z-momentum equations we obtain 
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the estimates for the characteristic pressure 

A,-region 
drops A& and App. across the 

The relative change Of pressure across the At-region tends to Zero as 

8, tends to MMty, i.e. within a relative error of order (6, ;I s)'~ the 
Pressure in the A,-region depends only on x . Hence It follows that the 

boundary I, between the regions A, and A, In the plane x - const (Flg.2) 
Is a semlclrcle. This 1s the only case In which the pressure In the A=- 
region is constant along z,, like In the case of flow past an axisynrmetric 

body whose axls coincides with the x-axis. The axisymmetry of the flow In 
the As-region Is established In a manner analogous to that used In [3 md4] 

In the analysis of the flow in the entropy and boundary layers over elongated 
slender bodies. 

0. The thickening of the effective body near the plane of symmetry leads 

to the appearance of a shock wave IO (Flg.2) which Is semicircular In the 

z I const plane. We obtain a system of equations which relate the flow 

parameters at the beglnnlng (section 8, in Plg.2) and at the erM. (section 

a0 In Flg.2) of the region of Interaction of the shock wave Zp with the 

boundary layer. In this region, whose width t tends to zero aa A, tends 

to infinity, the boundary-layer equations do not hold and one must use the 

Navler-Stokes equations. 

Inside this t-region (as we shall call It) the flow changes form the 

boundary-layer slip flow over e flat plate to the A-region flow. The cher- 

ecterlatlc values of the flow parameters In the t-region are intermediate 

between those ln the boundary layer and in the A-region. The density In 

the t-region Is low, as ti the boundary layer p - prnd2* / 52, and in the 

A-region p - pa (6, I x)*/z. Therefore the thickness of the region 6(x, E) 

(dimension ln the y-direction) colncldea, as In the case of the boundary 

layer, with the displacement thickness, I.e. the surface y = 6(x, a) oan be 

considered to be 8 stream surface. on this surface the components of the 

heat-flow vector and the stress tensor are equal to zero. Let us write down 

the Navle-Stokes equations ln divergence form, integrate these Over the 

volume of the t-region ( x' 16 some fixed Value) 

O<x<x‘, 0<?4<6(~:, 21, Zlb) d 2 < 2‘2 b> (24 

and transform the volume integrals Into surface integrals. 

Tu aocount of the no-slop condition et the wall and the condltlon 

that the VISCOUS etresses and the heat flux vanish on the surface Y-6(x,2), 

we obtain 

&XM& + 51 ~vnd& =O (2.2) 
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5 i (~v,,v + pn - T,) d& + 5 1 (PAP + pn - L) d& -k- 

+SSpndS,+SS(pn-TT,)dS,=O 

(2.3) 

ss IPVn~o - gn - W’n)l d& + 5 5 IP v,io - qn - (VT),] d& + Jo qdS4= 0 (2.4) 

Here S,, So, Se, S, are the lateral surfaces of the volume under’ consld- 

eratlon, which are parts of the surfaces # - xi(x) , I - Z,(X) , I/ - 6(zra) 

and y-0, respectively, a Is the outer normal to the lateral surface, 

v, Is the projection of the velocity vector v on a, T Is the viscous 

stress tensor, T, Is the stress acting on a unit sutface element with nor- 

mal LI , (VT) Is the product of the vector v and the tensor T , and Qm * 

(VT) * are the projections of the heat-flow vector 0 and of the vector (VT) 

on the normal a . 

Let b,/x tend to zero. In that case the lines I - at x ()and 8 - x0(x) 
tend to tne line a. I 0 as, clearly, zl*r,-A , and v, beoomes + IO on 

S, and to - m on So . Equation (2.4) takes the form 

11 pod&- ii pwd&= 0 (2.5) 

In the following we shall need only the x-momentum equation. On the S, 

surface we have 
cosnx = A/x, cosny = 0, cos nz = 1 + 0 ( A2/x2) (2.6) 

Tw = %&os nx + z,, GOS ny + z,, cos nz w z,A I x + z,, 

Taking account of the expressions for the viscous stresses we obtain the 

estimates 

Here the operator a/ar Is estimated as t”, and 7.. , 7,. are estl- 

mated according to their largest components. The term under the first lnte- 

gral sign in (2.3), projected on the x-axis, can be estimated as 

PVnU - P,Ucoa~*2 I x2, p cos nx - PJ-J,~ (b I x)‘A P-8) 

T M-J, 
nx - - 

p cos nx - T,, 
t ’ PVnU 

-A+ (2)2+A+ 2 

The characteristic transverse dimension of the t-region, Inside which the 

shock wave Interacts with the boundary layer, Is certainly not less than 6 + 

(cf., e.g. [5]), which leads to the last estimate. Thus the second and third 

term In the lntegrand can be neglected with respect to the flret term. The 

same argument holds for the second integral.. 

On the S, surface we have cos nx - 6, / 2. On the s, surface 

cosnx = 0, cosny = 1, cosnz=O 

z m = G, =r(g+g)_P+ 
(2.9) 

Taking account of the estimates for the surfaaes S,w S,,- b&, S,- S,m tx, 



766 U.D.IA@zhenskll 

we have 

ss 
pv,udS, - ss pv,ud-% - p, Urn%+3 / 5 

ss p cos nx dS, - p,U,a6,3t / .P, ss 
t@J, 

(p cos nx - T,) dS4 - T tz 
(2.10) 

From (2.10) It follows that the ratio of the sum of the intigrals over 

S, and S, to the sum of the integrals over S, and S, is of order t/x , 

i.e. tends to zero as R, tends to Infinity. Finally, as A,+ = , Equation 

(2.3), projected on x, takes on the form 

11 pwuds,- 11 pwud&=o (2.11) 

In an analogous manner Equation (2.4) can be written In the form 

ss 
pw&,dS, - 

ss pwiodSa = 0 (2.12) 

Equations (2.5), (2.11) and (2.12) are analogues of relations across a 

discontinuity, Into which the t-region contracts In the limit b*/x - 0 . 

The Integrals over S, can be calculated, as we mentioned before, from the 

solution for a boundary layer on a flat plate with slip at C - 0 . Taking 

account of (l.l), (1.4) these can be reduced to the form 

(2.13) 

co 

il = s 1V dh, i3 = T UW dh, i3 = TgIV dh 
0 II 0 

The Integrals t,, tn, ts can be calculated from solutions to (1.3). They 

all converge, due to the exponential vanishing of W as A -+ = . 

3. Let ua calculate the flow in the A-region, using the integral method. 

Integrate the equations of Inviscid flow, In divergence form, over the volume 

of the A,-region from 0 to x , where x is some fixed value. Take into 

account that the surface which separates the A,- and A,-regiOns is a stream 

eurfaoe, and that the mass, momentum, and energy fluxes through sections 

x - *e(r) and I - 8s '(r) (Flg.2) can be determined from (2.5), (2.11) and 

(2.12). The Integral relations take on the form 

ss pudS6. + 25, = 0, ~~(p+pua)dSa-nf pdr+2Ja=O 
(3.1) 

SI 
’ puiodSa + 2J3 = 0, p = pmU,=k ; ’ 

( ) 

The factor 2 In front of J,, J,, Js accounts for the mass, momentum and 
energy Inflow Into the &,-region from the both edges of the wing. The 

double lntegr&ile are evaluated over the surface s&, of the Al-region in a 

given x cross-section. The second integral in the momentum equation is 
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evaluated over the surface 2% (Flg.2) # separating the A,- and A,-regions, 

f(x) being the radlus of the circumference 2, (Flg.2). In addition to the 

three conservation equations we have the relation connecting the pressure 

with the angle of lncllnatlon of the surface 2, with respect to the x-axis, 

In which k Is a constant, assumed to be known (see below). As we showed 

above, the pressure p In the A,-region Is a function of x only. To 

close the system (3.1) we assume u I u(r), P = P(X) , I.e. we use the slm- 

pleat version of the Integral method. Introduce In (3.1) the dimensionless 

variables 

x = L*xo, r = L*ro, u = Ua;uo, p = p,Uwa PO, P = P,Po, i,, = U,2i,,o (3.2) 

The variable r,, IS clearly Identical with R, . 

Taking Into aCCOUnt. the expressions for Ji , Jp, JS (2.13) and the expres- 

sion Sa = 0.5nr a Equations (3.1) become In d~znslonless form 

p0u0r02 = - viIx~~~, (PO + PoUo2) ro2 - 2 5 Poror,,‘dxo = - v~~x,,% 

whro 2 ‘2- f! + f$J = _ vigx:/b, Ix - 1 p. p = i tr;>2, v = 16 Vzb”. 
(3.3) 

The system of lntegro-differential equations (3.3) has a simple solution, 
which satisfies the condition r,(O) - 0 . This solution Is 

r. = ~xol% , PO = BXO-~'~, PO = Txo+, u. = const (3.4) 

13 
‘-i’ = 16 (is / il + 0.32) 

u = $ +0.32, 2 = 
vx%aa + (0.18 (x - I)a + 1.2x (x - i)] ilis- [X + 0.3 (x - 1)] is 

IO.09 (x - 1) + 0.6~) il 

The value of the constant k Is found from numerical calculatlons of 

the self-similar solution for the flow over an axlsynnnetrlc power-law body 

of the form I/ - xnl n = 13/16 . 

Following Is a table of values of c, F, y, u, and T (F Is the tempera- 
ture In the A,-region, scaled with respect to the stagnation temperature) 

for x = 1.4 and U= 1.667 
and leading e$e sweep 

w / = / p / y 1 u. / T iiY!iki;:;;j;:ge 

Dlatomlc gas (x = 1.4, k =0.950) 
cheva, soms rekits of 
which were cited In [ 11. 

Monatomic gas (x = Q, k = 0.982) It can be seen from 



3 8hows the pressure p 
@I8 of x*-R, for fu - 

an& the thicknees of the effective body as 
&o', calculated f’FOm (3.4), {3.5)., The B&id 

r ~_h~41%nes correspond 
., K - 1.667, 

it zig 
tatlve 

respectively. For comparison, 
there are a80 given the 
dimsneionless pressure pt 
and the thlclaxess of the 
boundary layer yl, calcu- 
lated from 

yl = B (R, cot w)” 
which follow from the solu- 
tion for a slipping plate 
at ~-0. 

From Flg.3 one can see 
how the pressure and the 
boundaxy-layer thllckness 
near the plane of sylaraetry 
of the wln~ Increase as com- 
pared with-the values compu- 
ted from the eolution for a 
plate with slip. 

solution obtained above is of 8SymptOtiC nature. 
be used for ~&PO, 

Rigorously speaking 
and Y1ayo. One can ammme that the basic quail- 

features are valid already for I/,> &, and pi> po. 
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