SLTRONG INTERACIION BETWEFAN THE BOUNDARY LAYER AND THE INVISCID FLOW PAST A TRIANGULAR WING

PMM Vol.29, № 4., 1965, pp.635-643
M.D.LADYZHENSKII
(Moscow)
(Received October 10, 1964)

Abstract

The paper considers the viscous hypersonic flow past an infinitely slender triangular wing at zero angle of attack and free-stream Mach number $N_{\infty}-\infty$. It has been shown previously in [1], that the solution to the equations of the three-dimensional boundary layer, obtained independently of the left and right wing edges, is identical with the solution for strong interaction on a flat plate with slip flow. In view of the fact that the system of equations is parabolic this solution does not satisfy the condition of symmetry of flow in the plane of symmetry of the wing and does not hold in that region. In the present paper we shall construct a solution in the neighborhood of the plane of symmetry of the wing. Due to the fact that the secondary flows in the boundary layer are directed towards the plane of symmetry of the wing, the thichness of the effective body determined by the displacement of the boundary layer increases. The thickening of the effective body results in a strengthening of the shock and in an increase of pressure as compared with the value obtained from the solution for slip flow over a plate. It is shown that when the Reynolds number tends to infinity the transverse cross-section of the effective body in a plane normal to the undisturbed flow tends to a semicircle. 1. Consider the equations of a three-dimensional boundary layer in a Cartesian system of coordinates $x y z$ (the x-axis passes through the apex of the triangular wing and is parallel to the undisturbed velocity vector U_{∞} (Fig.1), the y-axis is normal to the plane of the wing).

Let us introduce the following notation: u, v, w - components of the velocity vector in the x, y, z directions, respectively, p - pressure, ρ - density, t - enthalpy, t_{0} - stagnation enthalpy, μ - coefficient of

*) The present issue was in press when the editors received the sad news about the tragic untimely death of the gifted young scientist. A biographical sketch and a list of publications of the author are given at the end of this paper.

Editors.
viscosity, x - adiabatic exponent (the gas is assumed to be perfect), 0 Prandtl number. In the case of flow over a triangular plate at zero angle of attack, the system of equations of the three-dimensional boundary layer has a self-similar solution [1] which is a function of the two variablea η and ζ only

$$
\begin{array}{rlrlr}
u=U_{\infty} U(\eta, \zeta), & v=R_{x}^{-1 / 4} U_{\infty} V(\eta, \zeta), & w=U_{\infty} W(\eta, \zeta) \\
p & =R_{x}^{-1 / 2} \rho_{\infty} U_{\infty}^{2} P(\zeta), & \rho=R_{x}^{-1 / 2} \rho_{\infty} R(\eta, \zeta), & i=U_{\infty}^{2} h(\eta, \zeta) \tag{1.1}\\
i_{0} & =U_{\infty}^{2} H(\eta, \zeta), & \eta=R_{x}^{1 / 4} y / x, \zeta=z / x, \quad R_{x}=\rho_{\infty} U_{\infty} x / \mu_{0}
\end{array}
$$

Here ρ_{∞} is the density of the undisturbed flow and μ_{0} is the coefficient of viscosity corresponding to the stagnation temperature. The equation of the outer edge of the boundary layer is

$$
\begin{equation*}
y=\delta(x, z)=x R_{x}^{-1 / 6} \oplus(\zeta) \tag{1.2}
\end{equation*}
$$

The functional relation between the dimensionless pressure $P(\zeta)$ and the

Fig. 1 function $\Phi(\zeta)$ is taken from the solution to the equations of inviscid flow separated from the viscous flow by a sharp boundary, which can be obtained by the "strip theory" [2]. After substitution of (1.1) the equations of the three-dimensional boundary layer reduce to a system of equations of parabolic type, for which σ is a characteristic.

Due to the fact that the equations are parabolic, the solution (which is constructed starting from the leading edge) is identical with the solution for strong interaction on a flat plate with slip. This solution, which is a function of one variable only, is [1]

$$
\begin{gather*}
U=\chi^{\prime}(\lambda), \quad W=\psi^{\prime}(\lambda)+\zeta_{0} \chi^{\prime}(\lambda), \quad H=g(\lambda) \\
\psi \psi^{\prime \prime}+2 \varepsilon\left(1+\zeta_{0}^{2}\right) L=4 \varepsilon^{-1} \psi^{\prime \prime \prime} \quad(\varepsilon=(x-1) / 2 \chi) \\
\psi \chi^{\prime \prime}-2 \varepsilon \zeta_{0} L=4 \varepsilon^{-1} \chi^{\prime \prime \prime} \quad\left(\zeta_{0}=c o \omega\right) \tag{1.3}\\
g^{\prime} \psi=\frac{4}{\varepsilon}\left(\frac{g^{\prime}}{\sigma}\right)^{\prime}+\frac{4}{\varepsilon} \frac{d}{d \lambda}\left[\left(1-\frac{1}{\sigma}\right) \frac{d}{d \lambda} \frac{(2 g-L)}{2}\right] \\
L=2 g-\left(1+\zeta_{0}^{2}\right)\left(\chi^{\prime}\right)^{2}-\left(\psi^{\prime}\right)^{2}-2 \zeta_{0} \psi^{\prime} \chi^{\prime} \\
\psi(0)=\psi^{\prime}(0)=\chi(0)=\chi^{\prime}(0)=0, \quad \psi^{\prime}(\infty)=-\zeta_{0}, \chi^{\prime}(\infty)=1 \\
g(0)=g_{b} \quad\left(\text { or } g^{\prime}(0)=0\right), \quad g(\infty)=1 / 2
\end{gather*}
$$

Here w is the angle of sweep of the leading edge of the wing, and g_{0} is the enthalpy which corresponds to the temperature of the wall. The variable λ is conneoted with η and ζ by A.A.Dorodnitsyn's transformation

$$
\begin{gather*}
\lambda=\frac{1}{\sqrt{A}\left(\zeta_{0}-\zeta\right)^{1 / 4}} \int_{0}^{n} R d \eta, \text { or } \frac{\eta}{\left(\zeta_{0}-\zeta\right)^{3 / 4}}=\frac{\varepsilon}{\sqrt{A}} \int_{0}^{\lambda} L(\lambda) d \lambda \tag{1.4}\\
A=\frac{3 e \zeta_{0}}{4} \sqrt{C} \int_{0}^{\infty} L(\lambda) d \lambda
\end{gather*}
$$

where C is the constant in Equation $p=\rho_{\infty} U_{\infty}{ }^{2} C \theta^{2}$, which relates the pressure in the inviscid flow with the angle of inclination θ between the outer edge of the boundary layer and the x-axis. The inviscid flow generated at the leading edge corresponds to flow over a power-law body $y=a(x \cos \omega-z \sin \omega)^{3 / 4}$, where a is a constant. Thus, instead of the tangent-wedge approxination $C=\frac{1}{2}(n+1)[1]$ we can take the exact value of C obtained from the solution of the self-similar inviscid flow, $C=1.42$ for $x=7 / 5$ and $C=1.77$ for $x=5 / 3$ (cf., e.g., [2], p. 455 of the Russian translation).

For simplicity we assume in Equations (1.3) a linear dependence of viscosity on enthalpy $\mu / \mu_{0}=2 n$. In the case of flow over an insulated plate $\left(O^{\prime}(0)=0\right)$ and $0=1$ Equations (1.3) reduce to a simpler form due to the existence of the integral $g=\frac{1}{2}$. The dimensionless pressure P, density R, and boundary-layer thickness Φ are determined by the relations

$$
\begin{equation*}
P=\frac{A}{\left(\zeta_{0}-\zeta\right)^{2 / 2}}, \quad R=\frac{P}{\varepsilon L}, \quad \Phi=B\left(\zeta_{0}-\zeta\right)^{3 / 4}, \quad B=\frac{4 \sqrt{A}}{3 \zeta_{0} \sqrt{\bar{C}}} \tag{1.5}
\end{equation*}
$$

(R is found from the equation of state). The solution for (1.3) to (1.5) does not satisfy the condition $w=0$ at $z=0$, i.e. it is not valid near the plane of symmetry of.the wing. In the boundary layer the z-component of the velocity vector is directed towards the plane of symmetry of the wing [1].

As a result of the collision of the flows from the left and right leading edges, the effective body formed by the outer edge of the boundary layer becomes thicker. Let \triangle denote a characteristic transverse dimension of the region near the plane of symmetry inside which the solution (1.3), (1.4) and (1.5) does not hold, and let us call that region
the Δ-region.
Let the Δ_{1}-region be that part of the Δ-region which is filled with gas coming from the boundary layer, and let the $\Delta_{\mathrm{a}}-r e g i o n$ be the region of inviscid flow over the effective body Δ_{i}. Fig. 2 represents the assumed flow regions in the plane $x=$ const. Here i_{i} is the boundary separating Δ_{1} and Δ_{2}, l_{2} is the shock wave which separates the Δ_{2}-region from the undisturbed flow, and l_{3}, l_{4} are the outer edge of the boundary layer and the shock wave corresponding to slip flow over a flat plate, respectively.

The flow parameters in the Δ_{1}-region can be estimated as

$$
\begin{gather*}
y \sim \Delta, \quad z \sim \Delta, \quad u \sim U_{\infty}, \quad v \sim \frac{U_{\infty} \Delta}{x} \tag{1.6}\\
w \sim \frac{U_{\infty} \Delta}{x}, \quad p \sim \frac{\rho_{\infty} U_{\infty} \Delta^{2}}{x^{2}}, \quad i \sim U_{\infty}^{2}, \rho \sim \frac{\rho_{\infty} \Delta^{2}}{x^{2}}
\end{gather*}
$$

The estimates for u and t, which are the usual boundary-layer estimates, are subsequently confirmed by the integral-method solution for the flow in the Δ-region. The estimates for v and w follow from the continuity equation. The pressure p (as well as the flow parameters in the $د_{2}$-region) is estimated by the usual hypersonic-flow method as the pressure corresponding to flow over a slender body of thickness Δ, and the estimate for ρ is obtained from the equation of state (ε is not assumed to be small).

Let us estimate the total mass flow from the boundary layer into the Δ_{1}-region

$$
\begin{equation*}
Q=\int_{0}^{x} d x \int_{0}^{\delta} \rho(x, y, 0) W(x, y, 0) d y, \quad \delta=\delta(x, 0) \tag{1.7}
\end{equation*}
$$

Here $\delta=\delta(x, z)$ is the boundary-layer thickness. As will be seen later, $\Delta / x \rightarrow 0$ for $R_{x} \rightarrow \infty$. Therefore the mass flow 0 is determined from the solution for slip flow over a flat plate, evaluated at $z=0$. This yields the estimates (b_{*} is the characteristic boundary-layer thickness)

$$
\begin{equation*}
\rho \sim \rho_{\infty} \delta_{*}^{2} / x^{2}, \quad w \sim U_{\infty}, \quad Q \sim \rho_{\infty} U_{\infty} \delta_{*}^{3} / x \quad\left(\delta_{*} / x=R_{x}^{-1 / 4}\right) \tag{1.8}
\end{equation*}
$$

Now we equate Q with $Q^{\prime}-$ the mass flow through the Δ_{1}-region in the x-direction, using estimates (1.6) and (1.8)

$$
\begin{equation*}
Q=Q^{\prime}, \quad \rho_{\infty} U_{\infty} \delta_{*}^{3} / x \sim \rho_{\infty} U_{\infty} \Delta^{4} / x^{2}, \quad \Delta / x \sim\left(\delta_{*} / x\right)^{1 / 4} \tag{1.9}
\end{equation*}
$$

Thus, when $R_{x} \rightarrow \infty$ the ratio Δ / x tends to zero more slowly than δ_{*} / x, so that the ratio $\Delta / \delta_{* \rightarrow \infty}$. In the following we investigate the assymptotic behavior of the solution for $\Delta / \delta_{*} \gg 1$.

Let us estimate the ratio between the convective and viscous terms in the Δ_{1}-region. Using (1.6) and (1.9) in the x-momentum equation, we obtain the estimates for the sum of the convective terms K and for the largest viscous term V_{μ}

$$
\begin{gather*}
K \sim \rho u \frac{\partial u}{\partial x} \sim \frac{\rho_{\infty} U_{\infty}^{2}}{x}\left(\frac{\Delta}{x}\right)^{2}, \quad V_{\mu}=\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right) \sim \frac{\mu_{0} U_{\infty}}{\Delta^{2}} \\
\frac{V_{\mu}}{K}=\frac{\mu_{0} U_{\infty}}{\Delta^{2}} / \frac{\rho_{\infty} U_{\infty}^{2}}{x}\left(\frac{\Delta}{x}\right)^{2}=\frac{\mu_{0}}{\rho_{\infty} U_{\infty} x}\left(\frac{x}{\Delta}\right)^{4} \sim \frac{\delta_{*}}{x} \tag{1.10}
\end{gather*}
$$

Analogous ratios between the convective and the dissipative terms in the Δ_{1}-region hold for the other components of the momentum equation and for the energy equation. The essential result is that the flow in the Δ_{1}-region is inviscid. Clearly, inside the Δ_{t}-region the no-slip condition must be satisfied at the wall and a boundary layer forms near the wall. It is important to note, however, that the thickness of this boundary layer is much less than Δ.

Substituting (1.6), (1.9) in the y - and z-momentum equations we obtain
the estimates for the characteristic pressure drops Δp_{y} and Δp_{1} across the Δ_{1}-region

$$
\begin{gather*}
\Delta p_{y}=\frac{\partial p}{\partial y} \Delta \sim \rho u \frac{\partial v}{\partial x} \Delta \sim \rho_{\infty} U_{\infty}^{2}\left(\frac{\Delta}{x}\right)^{4}, \quad \Delta p_{z}=\frac{\partial p}{\partial z} \Delta \sim \rho u \frac{\partial w}{\partial x} \Delta \sim \rho_{\infty} U_{\infty}=\left(\frac{\Lambda}{x}\right)^{3} \\
\frac{\Delta p_{y}}{p} \sim\left(\frac{\Delta}{x}\right)^{2} \sim\left(\frac{\delta_{*}}{x}\right)^{3 / 2}, \quad \frac{\Delta p_{z}}{p} \sim\left(\frac{\Delta}{x}\right)^{2} \sim\left(\frac{\delta_{*}}{x}\right)^{2 / 2} \tag{1.11}
\end{gather*}
$$

The relative change of pressure across the Δ_{4}-region tends to zero as R_{z} tends to infinity, i.e. within a relative error of order $\left(\delta_{*} / x\right)^{3 / 2}$ the pressure in the Δ_{1}-region depends only on x. Hence it follows that the boundary l_{1} between the regions Δ_{1} and Δ_{g} in the plane $x=$ const (Fig.2) is a semicircle. This is the only case in which the pressure in the Δ_{2} region is constant along l_{1}, like in the case of flow past an axisymmetric body whose axis coincides with the x-axis. The axisymmetry of the flow in the Δ_{9}-region is established in a manner analogous to that used in [3 and 4] in the analysis of the flow in the entropy and boundary layers over elongated slender bodies.
2. The thickening of the effective body near the plane of symmetry leads to the appearance of a shock wave i_{g} (Fig.2) which is semicircular in the $x=$ const plane. We obtain a system of equations which relate the flow parameters at the beginning (section z_{1} in Fig.2) and at the end (section i_{s} in Fig.2) of the region of interaction of the shock wave l_{g} with the boundary layer. In this region, whose width t tends to zero as R_{x} tends to infinity, the boundary-layer equations do not hold and one must use the Navier-Stokes equations.

Inside this t-region (as we shall call it) the flow changes form the boundary-layer slip flow over a flat plate to the Δ-region flow. The characteristic values of the flow parameters in the t-region are intermediate between those in the boundary layer and in the Δ-region. The density in the t-region is low, as in the boundary layer $\rho \sim \rho_{\infty} \delta^{2}{ }_{*} / x^{2}$, and in the Δ-region $\rho \sim \rho_{\infty}\left(\delta_{*} / x\right)^{3 / 2}$. Therefore the thickness of the region $\delta(x, z)$ (dimension in the y-direction) coincides, as in the case of the boundary layer, with the displacement thickness, i.e. the surface $y=\delta(x, z)$ can be considered to be a stream surface. On this surface the components of the heat-flow vector and the stress tensor are equal to zero. Let us write down the Navie-Stokes equations in divergence form, integrate these over the volume of the t-region (x^{\prime} is some fixed value)

$$
\begin{equation*}
0 \leqslant x \leqslant x^{\prime}, \quad 0 \leqslant y \leqslant \delta(x, z), \quad z_{1}(x) \leqslant z \leqslant z_{2}(x) \tag{2.1}
\end{equation*}
$$

and transform the volume integrals into surface integrals.
Taking account of the no-slop condition at the wall and the condition that the viscous atresses and the heat flux vanish on the surface $y=\delta(x, z)$, we obtain

$$
\begin{equation*}
\iint \rho v_{n} d S_{1}+\iint \rho v_{n} d S_{2}=0 \tag{2.2}
\end{equation*}
$$

$$
\begin{align*}
& \iint\left(\rho v_{n} \mathbf{v}+p \mathbf{n}-T_{n}\right) d S_{1}+\iint\left(\rho v_{n} \mathbf{v}+p \mathbf{n}-T_{n}\right) d S_{2}+ \tag{2.3}\\
& \quad+\iint p \mathbf{n} d S_{\mathbf{3}}+\iint\left(p \mathbf{n}-T_{n}\right) d S_{4}=0 \\
& \iint\left[\rho v_{n} i_{0}-q_{n}-\left(\mathbf{v} T_{n}\right)\right] d S_{1}+\iint\left[\rho v_{n} i_{0}-q_{n}-(\mathbf{v} T)_{n}\right] d S_{2}+\iint q_{n} d S_{4}=0 \tag{2.4}
\end{align*}
$$

Here $S_{1}, S_{a}, S_{3}, S_{4}$ are the lateral surfaces of the volume under consideration, which are parts of the surfaces $z=z_{1}(x), z=z_{z}(x), y=\delta(x, z)$ and $u=0$, respectively, n is the outer normal to the lateral surface, v_{n} is the projection of the velocity vector V on n, T is the viscous stress tensor, T_{s} is the stress acting on a unit sutface element with normal $n,(v T)$ is the product of the vector v and the tensor T, and q_{i}, $(\nabla T)_{a}$ are the projections of the heat-flow vector $\&$ and of the vector ($\mathbf{V} T$) on the normal n.

Let δ_{k} / x tend to zero. In that case the lines $g=z_{1}(x)$ and $z=g_{g}(x)$ tend to the line $a=0$ as, clearly, $z_{1} \sim z_{a} \sim \Delta$, and v_{a} becomes $+w$ on S_{1} and to $-w$ on S_{2}. Equation (2.4) takes the form

$$
\begin{equation*}
\iint \rho w d S_{1}-\iint \rho w d S_{2}=0 \tag{2.5}
\end{equation*}
$$

In the following we shall need only the x-momentum equation. On the S_{1} surface we have

$$
\begin{gather*}
\cos n x=\Delta / x, \quad \cos n y=0, \quad \cos n z=1+O\left(\Delta^{2} / x^{2}\right) \tag{2.6}\\
T_{n x}=\tau_{x x} \cos n x+\tau_{x y} \cos n y+\tau_{x z} \cos n z \sim \tau_{x x} \Delta / x+\tau_{x z}
\end{gather*}
$$

Taking account of the expressions for the viscous stresses we obtain the estimates

$$
\begin{equation*}
\tau_{x x}=\frac{4}{3} \mu \frac{\partial u}{\partial x}-\frac{2 \mu}{3}\left(\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \sim \frac{\mu_{0} U_{\infty}}{t}, \tau_{x z}=\mu\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right) \sim \frac{\mu_{0} U_{\infty}}{t} \tag{2.7}
\end{equation*}
$$

Here the operator $\partial / \partial z$ is estimated as t^{-1}, and $\tau_{x x}, \tau_{x y}$ are estimated according to their largest components. The term under the first integral sign in (2.3), projected on the x-axis, can be estimated as

$$
\begin{gather*}
\rho v_{n} u \sim \rho_{\infty} U_{\infty}{ }^{2} \delta_{*}^{2} / x^{2}, \quad p \cos n x \sim \rho_{\infty} U_{\infty}{ }^{2}\left(\delta_{*} / x\right)^{2} \Delta \tag{2.8}\\
T_{n x} \sim \frac{\mu_{0} U_{\infty}}{t}, \quad \frac{p \cos n x-T_{n x}}{\rho v_{n} u} \sim \Delta+\frac{\mu_{0} x^{2}}{\rho_{\infty} U_{\infty}^{2} \delta_{*}^{2} t} \sim \Delta+\left(\frac{\delta_{*}}{x}\right)^{2} \frac{x}{t} \leqslant \Delta+\frac{\delta_{*}}{x}
\end{gather*}
$$

The characteristic transverse dimension of the t-region, inside which the shock wave interacts with the boundary layer, is certainly not less than δ * (cf., e.g. [5]), which leads to the last estimate. Thus the second and third term in the integrand can be neglected with respect to the first term. The same argument holds for the second integral.
on the S_{3} surface we have $\cos n x \sim \delta_{*} / x$. On the s_{4} surface

$$
\begin{gather*}
\cos n x=0, \quad \cos n y=1, \quad \cos n z=0 \\
\tau_{n x}=\tau_{x y}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \sim \frac{\mu_{0} U_{\infty}}{\delta_{*}} \tag{2.9}
\end{gather*}
$$

Taking account of the estimates for the surfaces $S_{1} \sim S_{8} \sim \delta_{\sim} x, S_{9} \sim S_{4} \sim t_{x}$,
we have

$$
\begin{equation*}
\iint \rho v_{n} u d S_{1} \sim \iint \rho v_{n} u d S_{2} \sim \rho_{\infty} U_{\infty}^{\delta} \delta_{*}^{3} / x \tag{2.10}
\end{equation*}
$$

$\iint p \cos n x d S_{3} \sim \rho_{\infty} U_{\infty}{ }^{2} \delta_{*}{ }^{3} t / x^{2}, \quad \iint\left(p \cos n x-T_{n x}\right) d S_{4} \sim \frac{\mu_{0} U_{\infty}}{\delta_{*}} t x$
From (2.10) it follows that the ratio of the sum of the integrals over S_{3} and S_{4} to the sum of the integrals over S_{1} and S_{2} is of order t / x, 1.e. tends to zero as R_{x} tends to infinity. Finaliy, as $R_{x} \rightarrow \infty$, Equation (2.3), projected on x, takes on the form

$$
\begin{equation*}
\iint \rho w u d S_{1}-\iint \rho w u d S_{2}=0 \tag{2.11}
\end{equation*}
$$

In an analogous manner Equation (2.4) can be written in the form

$$
\begin{equation*}
\iint \rho w i_{0} d S_{1}-\iint \rho w i_{0} d S_{2}=0 \tag{2.12}
\end{equation*}
$$

Equations (2.5), (2.11) and (2.12) are analogues of relations across a discontinuity, into which the t-region contracts in the limit $\delta_{*} / x \rightarrow 0$. The integrals over S_{1} can be calculated, as we mentioned before, from the solution for a boundary layer on a flat plate with slip at $\zeta=0$. Taking account of (1.1), (1.4) these can be reduced to the form

$$
\begin{align*}
& J_{1}=\iint_{0} \rho w d S_{1}-\left({ }^{4} / 5\right) \rho_{\infty} U_{\infty} L_{*}^{3 / 4} x^{5 / 4} \sqrt{A \zeta_{0}}{ }^{1 / 4} i_{1}, \quad L_{*}=\frac{\mu_{0}}{\rho_{\infty} U_{\infty}} \\
& J_{2}=\iint_{0} \rho \text { wu } S_{1}=(4 / 5) \rho_{\infty} U_{\infty}{ }^{2} L_{*}^{3 / 4} x^{5 / 4} \sqrt{A \zeta_{0}}{ }^{1 / 4} i_{2} \tag{2.13}\\
& J_{3}=\iint_{\infty} \rho w i_{0} d S_{1}=(4 / 5) \rho_{\infty} U_{\infty}{ }^{3} L_{*}{ }^{3 / 4} x^{3 / 4} V \overline{A \zeta}_{0}^{1 / 4} i_{3} \\
& i_{1}=\int_{0}^{\infty} W d \lambda, \quad i_{2}=\int_{0}^{\infty} U W d \lambda, \quad i_{3}=\int_{0}^{\infty} g W d \lambda
\end{align*}
$$

The integrals t_{1}, t_{2}, t_{s} can be calculated from solutions to (1.3). They all converge, due to the exponential vanishing of N as $\lambda \rightarrow \infty$.
3. Let us calculate the flow in the Δ-region, using the integral method. Integrate the equations of inviscid flow, in divergence form, over the volume of the Δ_{1}-region from 0 to x, where x is some fixed value. Take into account that the surface which separates the Δ_{1} - and Δ_{2}-regions is a stream surface, and that the mass, momentum, and energy fluxes through sections $z=z_{g}(x)$ and $z=z_{g}^{\prime}(x)(F 1 g .2)$ can be determined from (2.5), (2.11) and (2.12). The integral relations take on the form

$$
\begin{gather*}
\iint \rho u d S_{\Delta}+2 J_{1}=0, \quad \iint\left(p+\rho u^{2}\right) d S_{\Delta}-\pi \int_{0}^{x} \rho r d r+2 J_{2}=0 \tag{3.1}\\
\iint_{0} \rho u i_{0} d S_{\Delta}+2 J_{3}=0, \quad p=\rho_{\infty} U_{\infty}^{2} k\left(\frac{d r}{d x}\right)^{2}
\end{gather*}
$$

The factor 2 in front of J_{1}, J_{3}, J_{3} accounts for the mass, momentum and energy inflow into the Δ_{1}-region from the both edges of the wing. The double integrals are evaluated over the surface S_{Δ}, of the Δ_{1}-region in a given x cross-section. The second integral in the momentum equation is
evaluated over the surface l_{1} (Fig.2), separating the Δ_{1} - and Δ_{2}-regions, $r(x)$ being the radius of the circumference l_{1} (Fig.2). In addition to the three conservation equations we have the relation connecting the pressure with the angle of inclination of the surface l_{1} with respect to the x-axis, in which k is a constant, assumed to be known (see below). As we showed above, the pressure p in the Δ_{1}-region is a function of x only. To close the system (3.1) we assume $u=u(x), p=\rho(x)$, 1.e. we use the simplest version of the integral method. Introduce in (3.1) the dimensionless variables
$x=L_{*} x_{0}, r=L_{*} r_{0}, u=U_{\infty} u_{0}, p=\rho_{\infty} U_{\infty}{ }^{2} p_{0}, \quad \rho=\rho_{\infty} \rho_{0}, \quad i_{0}=U_{\infty}{ }^{2} i_{00}$ (3.2)
The variable x_{0} is clearly identical with R_{x}.
Taking into account the expressions for J_{1}, J_{2}, J_{3} (2.13) and the expression $S_{\Delta}=0.5 \pi r^{2}$ Equations (3.1) become in dimensionless form

$$
\begin{align*}
& \rho_{0} u_{0} r_{0}^{2}=-v i_{1} x_{0}^{5 / 4}, \quad\left(p_{0}+\rho_{0} u_{0}^{2}\right) r_{0}^{2}-2 \int_{0}^{x} \rho_{0} r_{0} r_{0}{ }^{\prime} d x_{0}=-v i_{2} x_{0}^{3 / 4} \tag{3.3}\\
& \rho_{0} u_{0} r_{0}^{2}\left(\frac{x}{x-1} \frac{p_{0}}{\rho_{0}}+\frac{u_{0}^{2}}{2}\right)=-v i_{3} x_{0}{ }^{2 / 4}, \quad p=k\left(r_{0}\right)^{2}, \quad v=\frac{16 \sqrt{\overline{A_{1}} 5_{0}}{ }^{1 / 4}}{5 \pi}
\end{align*}
$$

The system of integro-differential equations (3.3) has a simple solution, which satisfies the condition $r_{0}(0)=0$. This solution is

$$
\begin{align*}
& r_{0}=\alpha x_{0}^{13 / 4}, \quad p_{0}=\beta x_{0}^{-3 / s}, \quad \rho_{0}=\gamma x_{0}{ }^{-3 / 4}, \quad u_{0}=\mathrm{const} \tag{3.4}\\
& \alpha=\left(\frac{256 v\left|i_{1}\right| Z}{169 k}\right)^{1 / 4}, \quad \beta=\frac{13}{16}\left(k v\left|i_{1}\right| Z\right)^{1 / 2}, \quad \gamma=\frac{13}{16\left(i_{2} / i_{1}+0.3 Z\right)}\left(\frac{v k\left|i_{1}\right|}{Z}\right)^{1 / 2} \tag{3.5}\\
& u=\frac{i_{2}}{i_{1}}+0.3 Z, Z=\frac{\sqrt{x^{2} i_{2}{ }^{2}+\left[0.18(x-1)^{2}+1.2 x(x-1)\right] i_{1} i_{3}}-[x+0.3(x-1)] i_{2}}{[0.09(x-1)+0.6 x] i_{1}}
\end{align*}
$$

The value of the constant k is found from numerical calculations of the self-similar solution for the flow over an axisymmetric power-law body of the form $y \sim x^{n}, n=13 / 16$.

Following is a table of values of $\alpha, \beta, \gamma, u_{0}$ and $T(T$ is the temperature in the Δ_{1}-region, scaled with respect to the stagnation temperature) for $x=1.4$ and $x=1.667$

ω	α	β	γ	u_{0}	T

Diatomic gas ($x=1.4, k=0.950$)

30°	0.548	0.189	2.55	0.694	0.518
45°	0.612	0.235	3.18	0.694	0.518
60°	0.664	0.277	3.69	0.689	0.525
75°	0.678	0.288	3.80	0.685	0.530
Monatomic gas $(x=5 / 3, k=0.982)$					
30°	0.590	0.226	2.35	0.721	0.479
45°	0.661	0.283	2.91	0.716	0.487
60°	0.713	0.330	3.34	0.711	0.494
65°	0.723	0.339	3.56	0.703	0.505

It can be seen from the examples that, in fact, $u \sim \mathbb{U}$ and $T \sim 1$ in the Δ_{2}-wiegion, which confirms the estimates (1.6).

Fig. 3 shows the pressure p_{8} and the thicloness of the effective body as functions of $x_{0}=R_{k}$ for $w=60^{\circ}$, calculated from (3.4), (3.5). The solid and dashed innes correapond
 to $x=1.4, x=1.667$, respectively. For comparison, there are also given the dimensionless pressure $p_{\text {: }}$ and the thickness of the boundary layer y_{1}, calculated from

$$
\begin{gathered}
p_{1}=\frac{A}{\sqrt{R_{x} \cot t \omega}} \\
y_{1}=B\left(R_{x} \cot \omega\right)^{3 / 4}
\end{gathered}
$$

which follow from the solution for a slipping plate at $z=0$.

From Fig. 3 one can see how the pressure and the boundary-layer thickness near the plane of bymanetry of the wing increase as compared with the values computed from the solution for a plate with slip.
The solution obtained above is of asymptotic nature. Rigorousiy speaking it may be used for $p_{1}>p_{0}$, and $y_{1}>y_{0}$. One can assume that the basic qualitative features are valld already for $y_{1}>y_{0}$ and $p_{1}>p_{0}$.

BIELIOGRAPHY

1. Ladyzhenskit, M. D.; O prostranstvennom giperzvukovom techenit okolo tonkikh kryl ev (on three-dimensional hypersonic flow past slender airfo11s). PNM Vol.28, NE 5, 1964.
2. Hayes, W.D. and Probstein, R.F., Hypersonic Flow Theory, Academic Press, 1959. (Russian transl. IL, 1962).
3. Ladyzhenski1, M.D., Qiperzvukovoe pravilo ploshchadei (Hypersonic area rule). Inzh. Zh_{h}, Vol.1, N 1, 1961.
4. Ladyzhenskii, M.D., Obtekanie tonkikh tel viazkim giperzuukovym potokom (Hypersonic viscous flow over slender bodies). PMN Vol.27, Nin 5,1963.
5. Lees, L. and Beeves, B.L., Supersonic separated and reattaching laminar fiows. General theory and application to adiabatic boundary layershock wave interaction, AIAA Report Ne 64-4, 1964.
6. Chernyi, G.a., Teohenila gaza s bol'shoi sverkhzvukovoi skorost'iu. Fizmatgiz, 1959: (English transiation by P.F.Probstein, Introauction to hypersonic fiow, Academic Press, 1961).

(November 10, 1931 - May 15, 1965)

Mikhail Davidovich Ladyghenskii was born to a soldier's family in Odessa. In 1949 he began his studies at Moscow University in the Fhysico-Techaical Departiment, Which two years later became an autonomous Institute. Arter greduatimg with honors from the Institute he joined in 1955 the central Aero-iyydrodynanic Institute (TsAGI).

In 1961 he submitted his thesis for the degree of Candidate of PhysicoNethemetical Sciences, entitled "Some Problems in the Gas Dymamics of

Hypersonic Flows".

M.D.Ladyzhenski1's interests covered a very wide field. He has worked on the theory of propagation of shock waves from supersonic planes, and on the theory of three-dimensional hypersonic flow, in particular on three-dimensional flow past slender weakly-blunted bodies (hypersonic area rule). Several of his investigations were devoted to problems of control of flow of an ionized gas in a magnetic field at low magnetic Reynolds numbers.

Problems of high-altitude hypersonic flight are connected with the study of viscous hypersonic flows. M.D.Ladyzhenskil was a pioneer in the theory of three-dimensional hypersonic flow of a viscous gas, and this theory has been published only as far as it has been advanced by his work.

In 1961 he was awarded the N.E. Zhukovskil Prize of the First Class (jointly with O.M.Belotserkovskil and V.V.Sychev) for his investigations in the field of hypersonic nozzles and three-dimensional hypersonic flows.

In addition to his work in the N.E.Thukovsicil Central Aero-Hydrodynamic Institute, M.D.Ladyzhenskil was on the faculty of the Moscow Physico-Technical Institute.

PUBLISHED WORKS OF M.D.LADYZAENSKII

1. Zatukhanie udarnykh voln (Damping of shock waves). PMM Vol. 21, Ne1, 1957.
2. Zadechi obtekanila v magnitnoi gidrodinamike (Problems of flow past bodies in magnetohydrodynamics). PMM Vol.23, N 2, 1959.
3. Giperzvukovoe obtekanie tela v magnitnoi gidrodinamike (Hypersonic flow past a body in magnetohydrodynamics). PMM Vol.23, Ne 6, 1959.
4. O techenilakh gaza s bol'shoi sverkhzvukovoi skorost'iu (On gas flows at high supersonic speed). Dokl.Akad.Nauk SSSR, Vol.134, Ne 2, 1960.
5. O giperzvukovom obtekanil zatuplennykh tel (on hypersonic flow past blunt bodies). Izv.Akad.Nauk SSSR, Ser. Mekh.Mashinost. No 1, 1961.
6. Giperzvukovoe pravilo ploshchadei (Hypersonic area rule). Inzh.Zh. Vol.1, N2 1, 1961.
7. Issledovanie rasprostranenila udarnykh voln y razriadnoi trubke (Study of the propagation of shock waves in a discharge tube). PNiF, W 2 , (jointly with L.G.Chernikova), 1961.
8. Obobshchenie giperzvukovogo pravila ploshchadei (Generalization of hypersonic area rule). Izv.Akad.Nauk SSSR, Ser.Mekh.Mashinost. N2 3, 1961.
9. O nekotorykh integralakh uravnenii okolozvukovykh techenil gaza (ón some integrals of the equations of transonic gas flow). Inzh. 2 h . Vol. 2 , N $1,1962$.
10. Analiz uravnenil giperzvukovukh techenii i reshenie zadachi Koshi (Analysis of the equations of hypersonic flow and the solution of the Cauchy problem). PMM Vol. 26, No 2, 1962.
11. Giperzvukovoe obtekanie tonkikh zatuplennykh ellipticheskikh konusov (Hypersonic flow past slender blunt elliptic cones). Inzh. Th., Vol.2, N 3, (jointly with A.A.Bogacheva), 1962.
12, Ob istechenii viazkogo gaza v pustotu (On the efflux of a viscous gas into a vacuum). PMM Vol.26, K2 4, 1962.
12. Ob odnom avtomodel inom reshenii uravnenil magnitnoi gidrodinamiki (One self-similar solution to the magnetohydrodynamic equations). PNM Vol.26, 㽗 5, (jointly with A.A.Bogacheva), 1962.
13. O magnitogidrodinamicheskom techenil pri malykh Re. (On Magnetohydrodynamic flow at Low Re,). Voprosy magnitnoi gidrodinamiki 1 dinamiki plazmy (Problems of Magnetohydrodynamics and Plasma Dynamics). Izd. Akcad.Nauk Latv.SSR, 1962.
14. K voprosu ob ustoichivosti plazmannogo shnure (on the problem of stability of Ion Hose). Izd. Akad.Nauk Latv.SSR, 1962.
15. 0 magnitogidrodinamicheskom giper zvukovom obtekanil klina (On the magnetohydrodynamic hypersonic flow past a wedge). PNM Vol.27, Ne 1, 1963.
16. Obtekanie tonkikh tel viazkim giperzvukovym potokom (Hypersonic viscous flow over slender bodies). PNM Vol.27, is 5, 1963.
17. O raschete pogranichnogo sloia szhimaemoi zhidicosti a granichnymi uslovilami sicol'zhenila (on the calculation of the boundary layer in a compressible fluid with alip conditions at the boundary). Doki.Alcad. Nauk SSSR Vol.154, 18 6, (jointly with V.S.Gelkin), 1964.
18. O prostranstvennom giperzvukovom techenil okolo tonkikh kryl'ev (On threedimensional hypersonic flow past slender airfoils) a PN Vol. 28, N5,1964.
19. O giperzvakovikh techenilakh v soplakh (On hypersonic flows in nozzies). PMM Vol. 29, KR 1, 1965.
